

Solid, liquid, gas	Ma freezi me ba conde	elting and ing happen at Iting point, biling and nsing happen	The amount of energy need for a state change depends	(HT on Limitations of sir • There are no t mod • All particles a son	ly) mple model: forces in the del ire shown as ires	5	solid liquid	Balanced symbol equations	Rej rec the e side	present chemical actions and have same number of atoms of each lement on both es of the equation	Subscript Nor	number rmal scri	H ₂ + Cl ₂ rs show the num le pt numbers show	 2HCl ber of aton ft. w the number 	ns of the element to its per of molecules.
	at be	oiling point.	the strength of forces betw particles in the substance	een e. Spheres a	are solid	g	gas			Devel		IF . /2	42C) - 045 · 4	200 - 225	2 kt/mal
State		Solid	Liquid	Gas	<u>autr</u>					Bond b	reaking: 94	5 + (3 X	430) = 945 + 1	308 = 225	3 KJ/ MOI
Closeness of particles	of	Very close	Close	Far apart	sublima	ation/ ing =		Bond ene	ergy		Bond m	naking:	6 x 391 = 2346	kJ/mol	
Arrangemei of particles	nt	Regular pattern	Randomly arranged	Randomly arranged	substanc	i a ce can		calculati	on	0\	verall energ	y chang	ge = 2253 - 234	6 = -93kJ/	mol
Movement of particles	of	Vibrate around a fixed position	Move around each other	Move quickly in all directions	chan directly	ge from					Therefore	reactio	on is exotherm	ic overall.	
Energy of particles		Low energy	Greater energy	Highest energy	from ga	jas, or as to				Enerav is taken in	from the s	urroup	dinas so the	• The	rmal decomposition
2D diagram		*****	8888	• •	solid, wi becomi	ithout ing a	E	Indothermic		temperature of	the surrou	ndings	decreases	• \$	ports injury packs
				• •	liquid betwe	l in een		Exothermic		Energy is transfer	red to the s	urround	dings so the	•	Combustion Hand warmers
		Т	emperature		Predicted stat	e				temperature of	the surrou	naingsi	increases	•	Neutralisation
Given tem	nperatu	re < melting po	int	So	lid		_			Energy released	d making		· · · · ·		
Given tem	nperatu	re is between m	elting and boiling points	Liq	quid			Exothe	rmic	new bonds is	greater			Activation /energy	Products are at a higher energy level than the reactants. As the
Given tem	nperatu	re > boiling poi	nt	Ga	IS		Overal	1		than the energ	gy taken existing	Endo	er 87	Products	reactants form products, energy is transferred from the
8888	888	Melting		Evaporating or boiling	•		energy			bonds.		thermic	5		mixture. The temperature of the surroundings decreases because
							of			Energy needed	to break		Reactants		energy is taken in during the reaction.
		Freezing		Condensing	0		reaction n	Endoth	ermic	existing bor	nds is				
Solid	d	Jonaly	Liquid		Gas					released maki	e energy ing new			Activation	Products are at a lower energy level than the reactants. When
	-									bonds.	-	Exo			energy is transferred to the
		Chemical re	actions only happen	The minimum an	nount of ene	rgy]	Breal in r	ting bor eactant	nds Endothermi	ic process	thermic	80 8 도 프	Products	of the surroundings increases because energy is released during the reaction.
Activati energ	ion Sy	when par suffi	ticles collide with cient energy	that colliding parti order to react activatior	icles must ha t is called the n energy.	ve in		Makir pr	ig bond oducts	ls in Exothermic	c process		Time		

Gas	Test	Positive result	Sterilising agents include chlorine, ozone and UV light.	Po	otable vater	W qu	/ater o ıality is	f an appropriate sessential for life	Human drinking dissolved salts ar	water should have low levels of d microbes. This is called potable
Hydrogen	Burning splint	'Pop' sound.	Potable water	UК	water	Ra Io	ain pro low lev si	vides water with els of dissolved ıbstances	This water collect make potable wa which is then pas sterilised.	ts in the ground/lakes/rivers. To ter an appropriate source is chosen, sed through filter beds and then
Oxygen	Glowing splint	Re-lights the splint.		Des	alinatio n	Nee is wat	eds to o s limite ter is n	ccur is fresh water d and salty/sea eeded for drinking	This can be achie membranes e.g. require large amo	ved by distillation or by using large reverse osmosis. These processes punts of energy.
Chlorine	Litmus paper (damp)	Bleaches the paper white.			Waste water		Proc lifest	luced from urban yles and industrial processes	These require tre environment. Se harmful microbe	eatment before used in the wage needs the organic matter and s removed.
Carbon dioxide	Limewater	Goes cloudy (as a solid calcium carbonate forms).	Catalytic converters - help reduce	<u>-</u>	Sewage treatmer	e nt	Inclu	ides many stages	 Screening an Sedimentatic (liquid waste 	d grit removal n to produce sludge and effluent or sewage).
Sulfur scr in the a	ubbing - reduction reduction the second seco	ces pollutants m factories.	the release of toxic gases from th	e					- Aerobic biolo	gical treatment of effluent.
Reduces acid rain.		Limestone slurry	contain platinum and rhodium, which act as catalysts.		o	xidati	tion	This is when oxyge gained by a compo during a reaction	n is e.g. metals und iron 1	reacting with oxygen, rusting of
		Clean gases to the chimney		ses out	Chem equat	nical tions		Show chemical rea reactant(s) and proc always involves and c	ctions - need luct(s) energy energy change	Law of conservation of mass states the total mass of products = the total mass of reactants.
Waste gases from power station	, j		Honeycomb structure		Word equation	ıs	mag	Uses words to sho reactants 2 pr nesium + oxygen 2 r	<i>w reaction</i> oducts magnesium oxide	Does not show what is happening to the atoms or the number of atoms.
	Calcium	r sulfate	Cases in CO NO O ₂		Symbol equation	ns		Uses symbols to sho reactants 2 pr 2Mg + O ₂ 2 2	ow reaction oducts MgO	Shows the number of atoms and molecules in the reaction, these need to be balanced.

Metals	Ovidatio			
High melting and boiling points	This is due to the strong metallic bonds.	<u>R</u> eductio		
Pure metals can be bent and shaped	Atoms are arranged in layers that can slide over each other.	C3		
Good conductors of electricity	Delocalised electrons carry electrical charge through the metal.	Phytomining is use 1. Plants are used		
Good conductors of thermal energy	Energy is transferred by the delocalised electrons.	compounds 2. The plants are h contains the meta 3. An acid is addea		

All

 kidation Is Loss (of electrons)
 duction Is Gain (of electrons)
 C3 - Chemicals of the natural environment

Plants are used to absorb metal compounds such as copper(II)

 The plants are harvested, then burned to produce ash, which contains the metal compounds

3. An acid is added to the ash to produce a solution containing dissolved metal compounds (leachate)

4. Copper can be obtained from these solutions by displacement using scrap iron

Metals form positive ions when they react The reactivity of a metal is related to its tendency to form positive ions			vity of a ited to its to form ions	The reactivity series arranges metals in order of their reactivity (their tendency to form positive ions).	potassium sodium calcium	most reactive	K Na Ca
Ca h	rrbon and hydrogen are non-metals but are included in the reactivity series			These two non-metals are included in the reactivity series as they can be used to extract some metals from their ores, depending on their reactivity.	Τ	Mg Al C	
Dis	Displacement A more reactive metal can displace a less reactive metal from a compound.		Silver nitrate + Sodium chloride → Sodium nitrate + Silver chloride	iron tin lead		Fe Sn Pb	
Extraction usin			traction usir	ng carbon	hydrogen		H
Metals less reactive than carbon can be extracted from their oxides by reduction.			zinc oxide	For example: e + carbon → zinc + carbon dioxide	silver	V	Ag Au
					platinum	least reactive	Pt
Extraction of metals and reduction Unreactive m the Earth as the from the group			Unreactive i the Earth as from the gro	metals, such as gold, are found in the metal itself. They can be mined bund.			

Bioleaching = Certain <u>bacteria</u> can break down low-grade ores to produce an <u>acidic solution</u> containing copper ions. The solution is called a **leachate** and the process is called <u>bioleaching</u>.

_ .

oys	Mixture of two or more elements at least one of which is a metal	Harder than pure metals because atoms of different sizes disrupt the layers so they cannot slide over each other.	Word equations	Uses words to show reaction reactants D products magnesium + oxygen D magnesium oxide	Does not show what is happening to the atoms or the number of atoms.	Displacement in solutions A more <u>reactive</u> metal can <u>displace</u> a less reactive metal from its <u>compounds</u> . For example, magnesium is more reactive than copper. It displaces copper from copper sulfate
	Pure metal	Alloy	Symbol equations	Uses symbols to show reaction reactants 2 products 2Mg + O ₂ 2 2MgO	Shows the number of atoms and molecules in the reaction, these need to be balanced	$\begin{tabular}{l} \hline \textbf{Solution} \\ \textbf{Magnesium + copper sulfate} \rightarrow \textbf{magnesium sulfate + copper} \\ \end{tabular} \\ tabu$

		-			
The ions disc solution is electrodes reactivity c	charged when an aqueous electrolysed using inert s depend on the relative of the elements involved.]	Process of electrolysis	Splitting up using electricity	When an ionic compound is melted or dissolved in water, the ions are free to move. These are then able to conduct electricity and are called electrolytes. Passing an electric current through electrolytes causes the ions to move to the electrodes.
At the	Metal will be produced on the electrode if it is less		Electrode	Anode Cathode	The positive electrode is called the anode. The negative electrode is called the cathode.
negative electrode	Hydrogen will be produced if the metal is more reactive than hydrogen.	w	/here do the ions go?	Cations Anions	Cations are positive ions and they move to the negative cathode. Anions are negative ions and they move to the positive anode.
At the	Oxygen is formed at positive electrode. If you have				Metals can be extracted from molten compounds using electrolysis.
positive electrode	a halide ion (Cl ⁻ , l ⁻ , Br ⁻) then you will get chlorine, bromine or iodine formed at that electrode.		Extracting metals	This pro	cess is used when the metal is too reactive to be extracted by reduction with carbon.
	┎═┥╞╧┑		using electrolysis	The p	rocess is expensive due to large amounts of energy needed to produce the electrical current. Example: aluminium is extracted in this way.
	E Bromide ions Br	ologic	al footprint	•	Processing - Ore has to be removed from rocks and other

Lead ions Pb ⁺

For

displacement

reactions

Molten lead (II)

bromide

For example:

The ionic equation for the reaction

between iron and copper (II) ions is:

 $Fe + Cu^{2+} \rightarrow Fe^{2+} + Cu$

The half-equation for iron (II) is:

Fe -> Fe²⁺ + 2e⁻

The half-equation for copper (II) ions is: $Cu^{2+} + 2e^{-} \rightarrow Cu$

Ionic half equations (HT only)

Ionic half

equations show

what happens

to each of the

reactants during

reactions

Metal ore is found in the Earth's crust and the extraction and processing of the metal ore has an impact on the environment. The **ecological footprint** helps designers and industry consider how the impact from mining for metal ore can be minimised. There are 6 aspects that form the ecological footprint. These are

- Sustainability Ore is a finite resource, which means it is <u>non-renewable</u>. Recycling metals can help ensure they are available for future generations.
- Extraction and erosion of landscape As ore is found in the Earth's crust, extraction involves clearing the land so that mining can take place. This can lead to <u>deforestation</u>, soil erosion and loss of habitat for wildlife.

- Processing Ore has to be removed from rocks and other minerals, which requires a lot of energy to process.
- Transportation Ore is usually found in remote areas that have limited or no transport links. A transport infrastructure often needs to be built to allow heavy goods vehicles to transport the ore to a processing site.
- Wastage Processing leads to a large amount of waste material that often need to be processed again before being disposed of.
- Pollution Extraction of the ore involves the use of heavy equipment that produces noise pollution. The heavy goods vehicles used to transport the ore release carbon dioxide and other gases into the environment.

The law of conservation of mass states that no <u>atoms</u> are lost or made in a chemical reaction. Instead, the atoms join together in different ways to form <u>products</u>.

Crude oil	A finite resource		Consisting mainly of pla was buried in the mud, the remains of ancient b	nkton that crude oil is piomass.	Crude	Display formula for	first four alkand	es			In oil	Hydrocarbon chains in crude oil come in lots of different lengths.	
Hydrocarbons	The the the co	se make up majority of ompounds in crude oil	Most of these hydrocard called alkanes.	bons are	oil, hydroc and alkane	H Methane (CH ₄)	H H Ethane (C ₂ H		Hydro n ch	ocarbo nains	Boiling	The boiling point of the chain depends on its length. During fractional distillation, they boil and	
General formula for alkanes		C _n H _{2n+2}	For example: C_2H_6		arbons	H-C-C-C-H H H H Propane (C ₃ H _g)	H-C-C-C-C-C H H H H Butane (C ₄ H	¦-н ч			points	separate at different temperatures due to this.	
Cracking The breaking down of lo		g down of long chain hydro smaller chains	ocarbons into	The Cra me ste	e smaller chains are more acking can be done by vari ethods including catalytic o am cracking.	useful. ious cracking and	Frad	ctions	1 hydroco crude c spli	The arbons in bil can be t into	Each fraction contains molecules with a similar number of carbon atoms in them. The process used to do this is called		
Catalytic cracking		The heavy fraction is heated until vaporised			Aft ove use	er vaporisation, the vapor er a hot catalyst forming s eful hydrocarbons.	ur is passed maller, more			Fractions can be processed to		fractional distillation. We depend on many of these fuels; petrol, diesel	
Steam cracking		The heavy fraction is heated until vapo			Aft wit ten use	er vaporisation, the vapor th steam and heated to a v nperature forming smalle eful hydrocarbons.	ur is mixed very high r, more	U: frac	sing ctions	produ and fe j petroc ind	ce fuels edstock for chemical ustry	and kerosene. Many useful materials are made by the petrochemical industry; solvents, lubricants and polymers.	
Alkanes to alkenes	Lon	g chain alkanes chain	are cracked into short alkenes.	Combustion During the complete combustion of hy carbon and hydrogen in the fuels a releasing carbon dioxide, water a			mbustion of hydi n in the fuels are ioxide, water and	rocarbo e oxidis d energ	ons, the ed, gy.			150°C 150°C 150°C 150°C 200°C 200°C	
Alkenes	Alk	enes are hydro bond (some are crackin	carbons with a double formed during the g process).	vith a double during the).		e + propene + ethane						Crude Oil عن من	
Properties of alkenes	Alkenes are more reactive than alkanes and react with bromine water. Bromine water changes from orange to colourless in the presence of alkenes.		Methane CH ₄ ($\begin{array}{c ccccccccccccccccccccccccccccccccccc$							The oil is heated in a furnace		

		Soda-lime glass, made by heating sand, sodium carbonate and limestone.				
Composite materials	A mixture of materials put together for a	Borosilicate glass, made from sand and boron trioxide, melts at higher temperatures than soda-lime glass.				
	e.g. strength	MDF wood (woodchips, shavings, sawdust and resin)				
		Concrete (cement, sand and gravel)				
Ceramic materials	Made from clay	Made by shaping wet clay and then heating in a furnace, common examples include pottery and bricks.				
Polymers	Many monomers can make polymers	These factors affect the properties of the polymer. Low density (LD) polymers and high density (HD) polymers are produced from ethene. These are formed under different conditions.				

Working properties:

- strength the ability of a material to withstand compression, tension and <u>shear</u>, eg in woven fabrics cotton isn't as strong as wool when pulled
- hardness the ability to withstand impact without damage, eg pine is easier to dent with an impact than oak; therefore, oak is harder
- toughness materials that are hard to break or snap are tough and can absorb shock, eg Kevlar in bulletproof vests is a very tough material
- malleability being able to bend or shape easily would make a material easily malleable, eg sheet metal such as steel or silver is malleable and can be hammered into shape
- ductility materials that can be stretched are ductile, eg pulling copper into wire shows it is ductile
- elasticity the ability to be stretched and then return to its original shape, eg elastane in swimming costumes is a highly elastic material

Physical properties:

- absorbency the ability to soak up moisture, light or heat, eg natural materials (such as cotton or paper) tend to be more absorbent than man-made materials (such as acrylic or polystyrene)
- density how solid a material is. This is measured by dividing mass (grams) by volume (cm³), eg lead is a dense material
- fusibility the ability of a material to be heated and joined to another material when cooled, eg webbing is fusible and can be ironed onto fabrics
- electrical conductivity the ability to conduct electricity, eg copper is a good conductor of electricity
- thermal conductivity the ability to conduct heat, eg steel is a good heat conductor, whereas pine is not

C4 - Material choices

<u>Metals</u> can <u>oxidise</u> in air. They react with oxygen and form metal oxides. Sodium, for example, is a very <u>reactive</u> metal. When sodium is cut or scratched, its freshly exposed shiny surface rapidly turns dull as a thin layer of sodium oxide forms:

sodium + oxygen → sodium oxide

 $4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$

Corrosion

Other metals may oxidise more slowly. Gold and other very unreactive metals do not oxidise in air at all.

<u>Corrosion</u> happens when a metal continues to oxidise. The metal becomes weaker over time, and eventually all of it may become metal oxide. Arusting experiment

The experiment in the diagram shows that both oxygen and water are needed for rusting to happen.

reduction is gain of electrons Calcium chloride (in the right-hand test tube) absorbs water

Rusting is a complex process. The example below show why both water and oxygen are needed for rusting to occur. They are interesting examples of oxidation, reduction and the use of half equations:

- 1. iron loses electrons and is oxidised to iron(II) ions: Fe \rightarrow Fe^{2+} + 2e^-
- 2. oxygen gains electrons in the presence of water and is reduced: $1/_2O_2$ + 2e $^-$ + H_2O \rightarrow 2OH $^-$
- 3. iron(II) ions lose electrons and are oxidised to iron(III) ions by oxygen: $2Fe^{2+} + \frac{1}{2}O_2 \rightarrow 2Fe^{3+} + O^{2-}$

Giant Covalent Structure - Diamond

Each carbon atom is bonded to four other carbon atoms. diamond making very strong. Diamond has a high melting and boiling point. Large amounts of energy are

needed to break the strong covalent bonds bet each carbon atom. Diamond does not conduct electricity because it has no free electrons.

Silicon dioxide (silicon and oxygen atoms) has a similar structure to that of diamond, in that its atoms are held together by strong covalent bonds. Large amounts of energy are needed to break the strong covalent bonds therefore silicon dioxide, like diamond, has a high melting and boiling point.

C4 - Material choices

	Giant Covalent Structure - Graphite
	Graphite is made up of layers of carbon arranged
)	in hexagons. Each carbon
	is bonded to three other
20	carbons and has one free
•	delocalised electron that is
	able to move between the layers. The layers are held
ween	together by weak intermolecular forces. The layers of

The layers of carbon can slide over each other easily as there are no strong covalent bonds between the layers. Graphite has a high melting point because a lot of energy is needed to bre carbon atoms. Gr

Giant Covale

is bonded to three others with one free delocalised electron. Graphene is able to conduct electricity. Graphene, when added to other materials, can make them even stronger. Useful in electricals and composites.

Nanoscience refers to structures that are 1-100	
in size, of the order of a few hundred ator	
ratio. This means that smaller amounts are need in comparison to normal sized particles. As the s	te
length of a cube decreases by a factor of 10, surface area to volume ratio increases approximat	th

ame of Particle	Diameter
anoparticle	1-100nm
ne particles (PM ₂₅)	100-2500nm
oarse particles (PM10)	2500-10000nm

Polymers

form

Polymers are long chain molecules that are made up of many smaller units called monomers. Atoms in a polymer chain are held together by strong covalent bonds. Between polymer molecules, there are intermolecular forces. Intermolecular forces attract polymer chains towards each other. Longer polymer chains have stronger forces of attraction than shorter ones therefore making stronger materials.

Fullerenes and Nanotubes

Molecules of carbon that are shaped like hollow tubes or balls, arranged in hexagons of five or seven carbon atoms They can be used to deliver drugs into the body.

Buckminsterfullerene has the formula Coo

Carbon Nanotubes are tiny carbon cylinders that are very long compared to their width. Nanotubes can conduct electricity as well as strengthening materials without adding much weight. The properties of carbon nanotubes make them useful in electronics and nanotechnology.

Possible Risks of Nanoparticles

As nanoparticles are so small, it makes it possible for them to be inhaled and enter the lungs. Once inside the body, nanoparticles may initiate harmful reactions and toxic substances could bind to them because of their large surface area to volume ratio. Nanoparticles have many applications. These include medicine, cosmetics, sun creams and deodorants. They can also be used as catalysts.

Modern nanoparticles are a relatively new phenomenon therefore it is difficult for scientists to truly determine the risks associated with them.

Unit	Decimal	Standard
cm	0.01 m	1 × 10 ⁻² m
mm	0.001 m	1 × 10 ⁻³ m
μm	0.000,001 m	1 × 10 ⁻⁶ m
nm	0.000,000,001 m	1 × 10 ⁻⁹ m

nt Structure – Graphene					
rap	hite	can cond	uct elec	ctricity.	
ak	the	covalent	bonds	between	tł
1	0				

